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We consider the decay of an initial discontinuity in a polytropic gas in a Minkowski 
space-time (the special relativistic Riemann problem). In order to get a general 
analytical solution for this problem, we analyse the properties of the relativistic flow 
across shock waves and rarefactions. As in classical hydrodynamics, the solution of the 
Riemann problem is found by solving an implicit algebraic equation which gives the 
pressure in the intermediate states. The solution presented here contains as a particular 
case the special relativistic shock-tube problem in which the gas is initially at rest. 
Finally, we discuss the impact of this result on the development of high-resolution 
shock-capturing numerical codes to solve the equations of relativistic hydrodynamics. 

1. Introduction 
In this paper we present the general analytical solution of the Riemann problem for 

a polytropic gas in a Minkowski space-time. As in the Newtonian case (see e.g. 
Courant & Friedrichs 1948) the special relativistic Riemann problem consists of 
calculating the one-dimensional gas flow resulting from the decay of a discontinuity 
which separates two constant initial states L (left) and R (right). 

In Newtonian hydrodynamics the Riemann problem has played a very important 
role both by providing analytical solutions against which hydrodynamical codes can be 
tested (see e.g. Sod 1978), and in the development of the codes themselves. In fact, most 
of the modern so-called high-resolution shock-capturing (HRSC) techniques, which 
have been developed during the last decade, are frequently based on the exact or 
approximate solution of Riemann problems between adjacent numerical cells (see e.g. 
the recent book by LeVeque 1991). These HRSC techniques are all based on the 
pioneering work of Godunov (1959), who first used the exact solution of Riemann 
problems to construct a hydrodynamical code. 

Prior to this work the analytical solution of the special relativistic Riemann problem 
was only known for a special case commonly called the shock-tube problem, where the 
fluid of both constant initial states is at rest (Thompson 1986). This fact has limited its 
use for testing special relativistic hydrodynamical codes. However, the general 
analytical solution derived by us (see below) opens the door for the use of exact 
Riemann solvers in numerical relativistic hydrodynamics. 

In the past elementary nonlinear special relativistic waves have been extensively 
treated in the literature (for a review, see e.g. the book by Anile 1989). However, none 
of these investigations aimed at solving the general Riemann problem. Nevertheless, let 

t On leave from Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot 
(Valencia), Spain. 



318 J.  M E  Marti and E. Miiller 

us mention some of the most interesting ones. The theory of relativistic simple waves 
and shocks was established by Taub (1948). Later the jump conditions and adiabats 
were further studied by Israel (1960), Lichnerowicz (1967, 1970, 1971) and Thorne 
(1973). Some analytical results concerning self-similar solutions of relativistic blast 
waves were obtained by Johnson & McKee (1971), Eltgroth (1971, 1972), Blandford 
& McKee (1976) and Bogoyavlenski (1978). Finally, the process of shock formation by 
steepening of simple waves has been studied in detail by Liang (1977) and Muscat0 
(1988) for relativistic fluid dynamics and relativistic magneto fluid dynamics, 
respectively. 

Let us now summarize the main features of the time evolution of the Riemann 
problem. The decay of the initial discontinuity qualitatively occurs in the same way 
both in relativistic and Newtonian hydrodynamics giving rise, in general, to three 
elementary nonlinear waves (see e.g. Landau & Lifshitz 1987). Two of them can be 
shocks or rarefaction waves, one moving towards the initial left state, and the other 
towards the initial right state. Between them, two new states appear, namely L, and 
R,, separated from each other by the third wave, which is a contact discontinuity 
moving with the fluid. Across the contact discontinuity pressure and velocity are 
constant, while the density exhibits a jump. Accordingly, the time evolution of a 
Riemann problem can be represented as 

where W and V denote a simple wave (shock or rarefaction) and a contact 
discontinuity, respectively. The arrows (t I +) indicate the direction (left I right) from 
which fluid elements enter the corresponding wave. 

As in the Newtonian case, the compressible character of shock waves (density and 
pressure rise across the shock; see Taub 1978) allows us to discriminate between shocks 
(9) and rarefaction waves(9) : 

where p is the pressure and subscripts a and b denote quantities ahead of and behind 
the wave. For the Riemann problem u =  L(R) and b=L,(R,) for W+ and W+, 
respectively. 

In complete analogy with the classical case, the possible types of decay of an initial 
discontinuity can be reduced to 

The standard shock-tube problem, considered by Thompson (1986), belongs to case 
(b), whereas case (a) represents two colliding fluids with a large relative velocity and 
case (c) represents two fluids moving apart from each other. 

The solution of the Riemann problem consists in finding the intermediate states, L, 
and R,, as well as the positions of the waves separating the four states (which only 
depend on L, L,, R, and R). 

The condition of self-similar flow through rarefaction waves and the Rankine- 
Hugoniot relations across shocks allow us to connect the intermediate states 
I ,  ( I  = L, R)  with their corresponding initial state I. The analytical solution of the 
Riemann problem in classical hydrodynamics (see e.g. Courant & Friedrichs 1948) 
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rests on the fact that the velocity in the intermediate states, vr,, can be written as a 
function of the pressure pr,. Thus, once pI, is known, vI, and all other unknown state 
quantities of I* can be calculated. In order to obtain the prcssurep,* one uses the jump 
conditions across the contact discontinuity, which are given by 

Equation (7)  is an implicit algebraic equation in pa and can be solved by means of an 
iterative method. The function vI,(p) is constructed by using the relations across the 
corresponding wave which are given by (2). 

In order to solve the Riemann problem in relativistic hydrodynamics we shall follow 
the same procedure. First, in $2 we give the equations of relativistic hydrodynamics in 
one spatial dimension. Then in $$3 and 4 we review the properties of the flow across 
rarefaction waves and shocks, respectively, and give the expressions relating velocity 
and pressure behind the waves to the flow conditions in the state ahead of the waves. 
In $ 5 ,  the results of the two previous sections are combined to solve the Riemann 
problem. Finally, in $6 we discuss the applicability of the solution in numerical 
relativistic hydrodynamics. 

Throughout the paper the Newtonian limit of the relativistic expressions is given 
whenever it is of interest. 

After this work was finished, the authors became aware of the paper by Smoller & 
Temple (1993), in which the general Riemann problem for relativistic hydrodynamics 
is solved for y = 1 .  

2. The equations of relativistic hydrodynamics in one spatial dimension 

energy momentum tensor 
Let us consider a perfect fluid described by a four-velocity vector field ut’ and an 

TPu = phui’u”+ppyP”” (u, v = 0,. . . ,3), (8) 
where p is the proper rest-mass density, p is the pressure and h is the specific enthalpy 
defined by 

with t: being the specific internal energy. Throughout this paper, units in which the 
speed of light is set to unity are used. In Cartesian coordinates x” = ( t , x ,y , z )  the 
Minkowski metric tensor f ”  is given by 

h = 1 +c+p/p ,  (9) 

~ ~ ’ ” =  diag(-l , l , l , l) .  (10) 

= 0, (1 1) 

Tf: = 0. (12) 

The motion of the fluid is governed by the equation of continuity 

and the conservation of energy-momentum 

In (1 1) and (12) we have used the summation convention and J: = af/ax”. 

adiabatic flow condition 

where s is the specific entropy. 

For a perfect fluid, the energy conservation equation P; = 0 is consistent with the 

s,,, u/” = 0 (13) 
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The system of equations (1 1) and (12) with ,u = 0, . . . , 3 ,  is closed by means of the 
normalization condition for the four-velocity 

ul̂ u E" = -1 (14) 

P = PCo?€) .  (15) 

p = Kp?, (16) 

and an equation of state (EOS) which we shall assume as given in the form 

In the following we restrict our discussion to a polytropic EOS 

K and y, the adiabatic index (1 < y < 2), being two constants for which the specific 
internal energy is given (up to an additive constant) by 

We further only consider motion in the x-direction, i.e. one-dimensional flows. 
Consequently, up is given by 

where v is the spatial velocity 
UE" = W(l,V,0,0), (18) 

v = dx/dt (19) 

and 

the corresponding Lorentz factor. 
With these restrictions the relativistic h ydrodynamical equations can be written as 

all aDv -+- = 0, 
at ax 

as a(su+p)  -+ = 0, 
at ax 

27 a(S-DU) -+ = 0,  
2t ax 

where we have introduced the definitions 
relativistic rest-mass density: 
momentum density : 

D = puo = pW, 

S = TO1 = ph W2v, 

energy density : 7 = T""-pu0 = phW2-p-pW 

In the limit u + 0, h + 1 the conserved quantities D, S and 7 approach their Newtonian 
counterparts p, pv and pE = pe  + ipv2 ,  which obey the classical conservation equations 

*++ aPV = 0, 
at ax 

= 0, 
apv a(pv"p) -+ 
at ax 

= 0. C?pE av@E+p) -+ 
at ax 
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Note that in the Newtonian limit first-order terms in the relativistic energy equation 
~ see (23) and (26) - cancel, while the second-order terms give rise to (29). 

3. Relation between the flow velocity and pressure behind relativistic 
rarefaction waves 

Rarefaction waves are simple waves in which the pressure and the density of a gas 
element decrease when crossing them. They are self-similar solutions of the flow 
equations, i.e. all quantities describing the fluid depend on x and t only through the 
combination E = x / t .  As in the Newtonian case, the conservation of entropy along fluid 
lines forces self-similar flows to be isentropic, which can easily be seen by writing (1 3) 
in terms of the similarity variable 5 

ds 
(?I-()- = 0 

d5 
and considering that, in general, v $; E. 

The flow equations reduce to the following condition for the differentials of p and 
0 :  

C W2dv+Sdp = 0, 
P 

the plus and minus signs corresponding to rarefaction waves propagating to the left 
(9J) and right (%+), respectively. The sound speed, c, = [( l /h) (Zpplc'p) I J;, is also given 
by 

(where the & sign has the same meaning as in (30)) or, equivalently, 

Equation (30) states that the Riemann invariant J+ (I) 

is constant through rarefaction waves propagating to the left (right) (see Taub 1948). 
For a polytropic EOS like (16) the sound speed can be written as a function of p 

only : 

and the integral in (33) can be evaluated analytically giving 

or 

tl,(-)+-ln[ l + v  1 (7- l)i+c, ] = constant 
1 - v  -(y-l)y (y-l).-c, 

= constant. 

(35) 

(36) 
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,u 

FIGURE 1 .  Loci of states which can be connected with a given state a by means of relativistic 
rarefaction waves propagating to the left (9+) and to the right (2+) and moving towards or away from 
a. The corresponding Newtonian curves (dashed lines) are shown for comparison. The state a is 
characterized byp, = 0.6, p, = 1.0, and u, = -0.3 (pressure and density are given in arbitrary units 
but compatible with our choice of the speed of light being equal to 1). A polytropic equation of state 
with y = was assumcd. 

The Newtonian limit of (36) leads to the well-known condition for rarefaction waves 
in classical hydrodynamics (see e.g. Courant & Friedrichs 1948) : 

L v+- c, = constant. 
Y - 1  

(3 7 )  

Expression (36) can be used to connect two states inside the rarefaction wave?, and in 
particular the states ahead of and behind the wave, a and b. Considering that in a 
Riemann problem the state a is known, (36) allows one to obtain a relation between 
the flow velocity and pressure behind a rarefaction wave : 

V b  = (l + V u > A * ( p b ) - ( l  -vu> 

(l +'a) A*(pb) ' 
where A ,  - is defined by 

(y- 1);- c,(p)(y- I):+ c,(pa) H r l ) - $  

U P )  = [(y- 1)' * + C,(P)  (Y - 1); - C,(P,) 1 
Equation (38) can be stated in a more compact way: 

(39) 

The function K ( p )  is shown in figure 1, the various branches of the curves 
corresponding to rarefaction waves propagating towards or away from a. Rarefaction 
waves move towards (away from) a if the pressure inside the rarefaction is smaller 

t We will use this fact in $ 5  to construct the analytical solution inside the rarefaction. 
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(larger) than p a .  The symmetry of the function with respect to the axis v = u,, 
characteristic of Newtonian rarefactions, is lost (it only remains for the special case 
u, = 0) owing to the finite light speed which limits the flow velocity. 

In a Riemann problem the state a is ahead of the wave and only those branches 
corresponding to waves propagating towards a in figure 1 must be considered. 
Moreover, one can discriminate between waves propagating towards the left and right 
by taking into account that the initial left (right) state can only be reached by a wave 
propagating towards the left (right). 

4. Relation between post-shock flow velocity and pressure for relativistic 
shock waves 

The Rankine-Hugoniot conditions relate the states on both sides of the shock and 
are based on the continuity of the mass flux and the energy-momentum flux across 
shocks. Their relativistic version was first obtained by Taub (1948). 

If 2 is a hypersurface in Minkowski space across which p ,  up and T’” are 
discontinuous, the relativistic Rankine-Hugoniot conditions are given by 

ku,]n, = 0, (41) 
[Tp”] n, = 0, (42) 

where n, is the unit normal to L and we have used the notation 

F, and 4 being the boundary values of F on the two sides of 2. 

np is given by 

where v, is the shock’s Lorentz factor 

In a frame in which the shock is moving with coordinate velocity Y ,  along the x-axis, 

n, = w- v,, 1,0,0>, (44) 

1 w, = 
(1 - V,z)i. (45) 

Equation (41) allows one to introduce the (invariant) mass flux across the shock, j ,  

j~ q D g , ( K - ~ , )  = W,D,(V,-v,). (44) 
According to our definition, j is positive for shocks propagating towards the right. 
Note that our convention differs from that of Landau & Lifshitz (1987) and that of 
Courant & Friedrichs (1948) but follows Taub (1978) and Anile (1989). 

Now, the Rankine-Hugoniot conditions ((41) and (42) withp = 0, l )  can be written, 
in terms of the conserved quantities D, S and T and the mass fluxj, as 

where in the derivation of (49) we have made use of the relation 

s = U(T+D+P) .  (50) 
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The Newtonian limit of (47)-(49) gives the well-known 
relations 

c4 = -j*7[1/P19 
[PI = j ,  [.I 

[UP] =j,[El, 
where the Newtonian mass flux, j x ,  is defined by 

j,, /la( V ,  - va> = Pb( K - 21b? 

classical Rankine-Hugoniot 

(54) 
For a Riemann problem in Newtonian hydrodynamics, the pre-shock state a is known. 
Thus, (51)-(53) and the EOS can be used to determine the post-shock state b, i.e. the 
quantities pb ,  pb ,  eb, vb and j ,  (or V,). In fact, (52) relates the velocity and pressure 
jumps to the mass flux. Hence, j,, can be expressed in terms of the known pre-shock 
state variables and the post-shock pressure pb, which then allows one to obtain the 
post-shock velocity v b  as a function of pb. In order to solve the relativistic Riemann 
problem we shall proceed along the same steps as in the Newtonian case. 

4.1. Post-shock flow velocity vb as afunction of pb,  j and V ,  
Taking into account (501, one can rewrite (48) in the form 

As the next step one writes the terms 7b/Db and l / D b  in (55) as functions of vb,  pb, j 
and V ,  using (49) and (47), respectively. Finally, after some rearrangement, one finds 

or in terms of the state variables p ,  p, h and v 

which has the correct Newtonian limit 

4.2. Mass$ux and shock velocity as functions of the post-shock pressure 
Starting from (46) one expresses V ,  in terms of the mass flux (see the Appendix), i.e. the 
problem is reduced to writing the mass flux in terms of the post-shock pressure. In the 
Newtonian case one proceeds as follows. Firstly, (51) and (52) are combined to yield 

Next, p b  is eliminated using the EOS and the Hugoniot adiabat 

(59) 

which relates only thermodynamical quantities on both sides of the shock wave. 
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FIGURE 2. Loci of states which can be connected with a given state a by means of relativistic shock 
waves propagating to the left ( x )  and to the right (9-) and moving towards or away from a. The 
corresponding Newtonian curves (dashed lines) are shown for comparison. The state a is characterized 
by p ,  = 0.25, p, = 1 .O, and u, = -0.5. A polytropic equation of state with y = 5 was assumed. 

In relativistic hydrodynamics the analogous expression to (59) is obtained by 
multiplying (42) by n,, and using the definition of the relativistic mass flux (see (46)), 
which leads to 

The Taub adiabat (Thorne 1973), the relativistic version of the Hugoniot adiabat, is 
obtained by multiplying (42) by (hu,,), and by (hu,J, and summing both resulting 
expressions (see, for example, Taub 1978). After a little algebra one finds 

[hz] = p+%) [p].  
P b  Pa 

Next the post-shock density pb is eliminated in both (61) and (62) using the relation 

YPb 

Pb = ( y -  l)(h,- 1)' (63) 

which is valid for a polytropic EOS. Then the Taub adiabat can be rewritten in the 
form 

which is a quadratic equation for the post-shock enthalpy h, as a function of p b .  
Considering further that both 

Y- 1 P b - P a  1>------- 
Y P b  
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and 

hold independently whether ( p ,  -pb) is larger or smaller than zero, it can be shown that 
one of the two roots of (64) is always negative and must be discarded as a physical 
solution. Inserting the physical solution of (64) into the modified (61) (i.e. p b  being 
eliminated; see above) one obtains an expression that gives the square of the mass flux 
j z  as a function of pb. Finally, using the positive (negative) root o f j2  for shock waves 
propagating towards the right (left), (56)  (or (57)) allows one to obtain the desired 
relation between the post-shock velocity vb and the post-shock pressure pb. In a 
compact way the relation reads 

The function SPa(p) is shown in figure 2. Its various branches correspond to shock 
waves propagating towards or away from a. As in the case of rarefactions (see $3), the 
symmetry of the function Y$(p) with respect to the axis v = v,, characteristic of its 
Newtonian analogue, is lost. Only in the special case v, = 0 does the symmetry still 
exist. In order to select the relevant branch of the function 9$(p) (see figure 2) the 
same arguments as in the case of rarefaction waves can be used (see $3). 

0, = 9 g P b ) -  (67) 

5. The solution of the Riemann problem in relativistic hydrodynamics 
All states which can be connected to a given state R on the right through a wave 

propagating to the right can be represented in the (v,p)-plane by a curve Wc. The 
analytical expression for this curve is given by 

Similarly, all points representing states connected to a given state L on the left by a 
wave propagating to the left lie on the curve 

In the case of a Riemann problem, where the states L and R are the corresponding 
initial left and right states, the functions -ky-c and Wfi allow one to determine the 
functions vR,(p) and vL,(p), respectively. The pressurep, and the flow velocity v* in the 
intermediate states are then given by the condition 

Figures 3 and 4 show the solution of two particular Riemann problems. Once p* and 
v* are known, the remaining quantities can be derived: pL, ,  pR, ,  eL, and eRI ,  the 
(constant) propagation velocities of the waves (i.e. the shock velocities and/or the 
velocities of the head and tail of the rarefactions), and if rarefaction waves are 
produced by the decay of the initial discontinuity, the flow conditions inside them. 

The EOS can be used to obtain the specific internal energy in the intermediate states 
once the density of these states is known. The remaining state variables of the 
intermediate state 1, can be calculated using the relations between I* and the respective 
initial state I, which are given through the corresponding wave. 

In the case of shock waves (63) and (64) can be used to compute pI,. For this purpose 
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FIGURE 3. Graphical solution in the (p,v)-plane of the relativistic Riemann problem with initial data 
p L  = 1.0, p L  = 1.0, uL = O ; p ,  = 0.1, pR = 0.125 and uR = 0. Apolytropic equation of state with y = 

was assumed. This problem is called Sod's problem (Sod 1978). The crossing point of the two solid 
lines gives the pressure and the flow velocity in the intermediate states. The corresponding Newtonian 
solution (dashed lines) is shown for comparison. 

21 

FIGURE 4. Graphical solution in the ( p .  0)-plane of the relativistic Riemann problem with initial data 
p L  = lo3, pL = 1 .O, uL = 0.5; p R  = 1 .O, p R  = 1 .O and D, = 0. A polytropic equation of state with y = 5 
was assumed. The decay of the discontinuity leads to a flow velocity in the intermediate states close 
to the speed of light. Note the asymptotic behaviour of W: when it approaches u = 1. 
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FIGURE 5. Analytical pressure, density and flow velocity profiles for the relativistic Riemann problem 
with initial datap, = lo3, pL = 1.0, u, = 0; pI: = p ,  = 1.0, u, = 0. A polytropic equation of state 
with y = was assumed (case (b) ;  see (4)). The initial discontinuity is located at x = 0.5. The solution 
is shown at t = 0.4. 

(63) must be evaluated in state I,, while (64) must be calculated with a = I a n d  b = I*. 
Then, the mass flux across the shock is given by (61) and the shock velocity follows 
from (46). 

In the case of rarefaction waves and for a polytropic EOS the isentropic character 
of the flow implies a relation between densities and pressures on both sides of the 
rarefaction, which reads 

from which p I ,  can be determined. The velocities of the head and tail of the rarefaction, 
th and tt, are given by the limiting values of 6 in (32): 

and 

u, f CSI 

6h = 1 f v ,  CSI 

(73) 

where csl, is calculated from p, ,  and p I ,  using (34). The - (+) sign applies to 
rarefaction waves propagating to the left (right). Finally, inside the rarefaction 
(& < 6 < lt for rarefactions propagating to the left; Ct < 6 < t,, for those propagating 
to the right) the algebraic system defined by (3 1) and (38) must be solved with a = I for 
the unknowns c,(t) and ~ ( 6 ) .  The polytropic EOS can again be used to calculate p(5 )  

This concludes the derivation of the analytical solution of the relativistic Riemann 
problem. It has been obtained by solving two algebraic implicit equations. These are 
(70), which allows one to compute p*,  and the equation derived by substituting c,(Q 

and P ( 0  from C s ( O  
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FIGURE 7. Same as figure 5, but for initial data pr, = 1.0, pL = 1.0, 71' = 0.9; p R  = 10, pR = 1.0, 
uR = 0;  y = 4 (case (a); see (3)). 

or v(E) in (38) by the expression given in (31). The latter equation is required to 
calculate the flow variables inside the rarefaction wave. Given the smoothness of the 
functions involved, one expects that numerical techniques for solving implicit equations 
(e.g. a Newton-Raphson iteration) should converge according to their theoretical 
convergence rates. Figures 5-7 show the analytical solution of three different Riemann 
problems corresponding to the types described in the Introduction (see (3)-(5)). 
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6. Application to numerical relativistic hydrodynamics 
Relativistic hydrodynamics plays an important role in different fields of physics, e.g. 

in astrophysics, cosmology or nuclear physics. In extragalactic jets emanating from 
core-dominated radio sources associated with galaxies with active nuclei (see, e.g. 
Phinney 1987), or in current laboratory heavy-ion collisions (see, e.g. Strottman 1989) 
even ultra-relativistic flows are encountered. The necessity of simulating such 
relativistic flows which also involve strong shocks is triggering the development of 
relativistic hydro-codes. 

As mentioned in the Introduction both approximate and exact Riemann solvers have 
become increasingly popular in thc development of high-resolution shock-capturing 
(HRSC) Newtonian hydro-codes. In the case of relativistic hydrodynamics HRSC 
techniques based on approximate Rieman solvers have recently been used to simulate 
one-dimensional flows (Marti, Ibaiiez & Miralles 1991; Marquina et al. 1992; 
Schneider et al. 1993) and multi-dimensional ones (Font et al. 1993; Eulderink & 
Mellema 1993). 

Using the analytical Riemann solution described above one can construct a 
relativistic version of Godunov's (1959) method, which is qualitatively as simple as its 
Newtonian analogue. In fact, we have obtained some preliminary results with a one- 
dimensional HRSC code based on this exact solution. The code has successfully passed 
the standard tests including the relativistic version of Sod's shock tube problem (Sod 
1978), the relativistic shock reflection problem (Centrella & Wilson 1984), the 
propagation of a relativistic blast wave (Norman & Winkler 1986) and the relativistic 
version of the interaction of two blast waves (Woodward & Colella 1984). The results 
will be described in more detail in a forthcoming publication by the present authors. 

The application of exact Riemann solvers in multi-dimensional calculations of 
relativistic flows unfortunately is more complicated than in Newtonian simulations. In 
order to explain this statement let us first reconsider some basic aspects of Newtonian 
simulations. Most modern multi-dimensional (explicit) finite-difference codes are 
based on the technique of directional splitting. In this technique the multi-dimensional 
problem is split into (two or three) sets of one-dimensional problems (the so-called 
sweeps along coordinate directions), which are solved consecutively in each timestep 
(see e.g. LeVeque 1991). Thus, a timestep consists of solving sets of one-dimensional 
Riemann problems in the presence of a tangential velocity, v" (see figure 8). 

As is well known (see e.g. Landau & Lifshitz 1987) in classical hydrodynamics, the 
decay of an initial discontinuity does not depend on the tangential velocity and, 
furthermore, this velocity is constant across shock waves and rarefactions. These facts 
reduce the problem to the solution of the one-dimensional problem plus the 
determination of the correct value of the tangential velocity in the intermediate states. 
The latter is given by 

V J ,  - 011 

where I stands for either L or R .  Thus. as far as the Riemann solver is concerned, the 
extension of one-dimensional Newtonian hydro-codes to multi-dimensional ones is 
straightforward. 

In relativistic calculations, however, one has to deal with the solution of Riemann 
problems in which the two components of the flow velocity (normal and tangential) are 
coupled owing to the Presence Of the Lorentz factor in the equations. A derivation 
similar to that demibed in $9 3 and 4, but including a tangential component of the flow 
velocity in the initial condition, shows that for shock waves the presence of the 
tangential velocity component Only complicates the algebraic expressions. In the case 

(74) T -  T 
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FIGURE 8. Schematic representation of two adjacent computational cells of a two-dimensional grid, 
which illustrates that for the solution of the Riemann problem in two-dimensional flows both the 
normal and the tangential components of the flow velocity must be taken into account on both sides 
of the interface. 

of rarefactions, however, it requires the solution of a system of two ordinary 
differential equations (ODE). One ODE relates the variations of density and normal 
velocity inside the wave. The other ODE relates the normal and tangential component 
of the flow velocity. Although the need for an ODE solver makes the exact solution 
unattractive for modern HRSC codes, the solution still remains interesting, because it 
allows one to construct analytical solutions for multi-dimensional relativistic Riemann 
problems. 
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Appendix. Shock velocity as a function of the mass flux across the shock 
In this Appendix we discuss the solution of (46): 

i = KP, Wa(I/--,), (A 1) 
which relates the shock velocity V ,  with the mass flux j across the shock. All other 
quantities in (A 1) are known, because they describe the given pre-shock state. 

Squaring (A 1) and rearranging the resulting terms one gets 

@: W: + j 2 )  V," - 2pE W,Z u, +p i  W: v: - j z  = 0, (A 2) 
which is a quadratic equation for the shock velocity in terms of the mass flux. The two 
solutions of (A 2) are 

In order to eliminate the unphysical of the two solutions let us first consider a shock 
propagating to the left ( j  < 0). According to (A 1) in this case 

v, > v,. (A 4) 
Substituting V ,  in (A 4) by the expression given in (A 3) one finds after some algebra 

(A 5 )  21, > f [ 1 + (p,/j)"t 
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In case of the plus sign the right-hand side of (A 5 )  is larger than 1, i.e. z.', is larger than 
the speed of light. Thus, V,' obviously is an unphysical solution, and can be discarded 
for shocks propagating to the left. A similar reasoning shows that V; is an unphysical 
solution for shocks propagating to the right ( j  > 0). 
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